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The hyperfine and quadrupole coupling constants at nitrogen in iron (III) porphyrin chloride have 
been calculated. The wave functions were obtained by means of a self-consistent charge extended 
Htickel method [2]. The spin Hamiltonian for the system is 

=AI.S+I,Jff .  S 
e2Qqz,,~,, 

+ [(312,-  I" I) + q(I2,,- I#,,)], 
4 I ( 2 I -  1) 

where the double-primed axis refers to the principal axis system of the field-gradient tensor. In the 
calculation of the nitrogen hyperfine constant, three contributions were considered: 1) the Fermi 
contact term; 2) the exchange polarization contribution; 3) the many body contribution. The last 
contribution was included because of its large relative importance in atomic nitrogen. The Fermi 
contact contribution dominates the nitrogen hyperfine constant, and the contact term has a 15 % 
contribution from non-local effects, indicating significant unpaired electron density between iron and 
nitrogen. The exchange polarization term is negative and smaller than the Fermi contact term. 
Correlation effects are quite small, in contrast to the atomic nitrogen case. The dipolar hyperfine 
terms and the principal axis system of the hyperfine interaction were also evaluated. The quadrupole 
coupling constant for nitrogen was calculated, as well as the corresponding principal axis system. The 
contribution of unpaired electrons to the field gradient at nitrogen is substantial. The results of the 
calculations suggest considerable delocalization of unpaired electrons, in contrast to what one assumes 
using a crystal field model. 

Die Hyperfein- und Quadrupol-Kopplungskonstanten f/Jr Stickstoff in Eisen(III) Porphyrin- 
chlorid wurden ausgerechnet. Die Wellenfunktionen wurden mittels einer erweiterten Hiickelmethode 
[2] - -  mit selbstkonsistenter Ladung - -  gewonnen. Der Spin-Hamiltonoperator ffir dies System ist: 

X=AI.S+I.~.S 

eQqz"," [(3i?_i.i)+~7(i~_12,,)], 
+ 41(21-  1) " 

wobei die doppelt gestrichenen Koordinaten sich auf das Hat/ptachsensystem des Feldgradienten- 
tensors beziehen. Bei der Berechnung der Konstanten der Hyperfeinstruktur des Stickstoff wurden 
drei Beitrage berticksichtigt: 1. der Fermikontaktterm; 2. der Beitrag der Austauschpolarisation; 
3. der Vielk6rperbeitrag. Der letzte Beitrag wurde wegen seiner relativen Wichtigkeit beim atomaren 
Stickstoff mit eingeschlossen. Der Fermikontakt-Beitrag beherrscht die Hyperfeinkonstante des Stick- 
stoffs, 15 % des Beitrags vom Kontaktterm riihren yon nichtlokalen Effekten her und deuten offensicht- 
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lich auf eine Elektronendichte zwischen dem Eisen- und Stickstoffatom, die auf ungepaarte Elektronen 
hinweist. Der Term der Austauschpolarisation ist negativ und kleiner als der Fermikontaktterm. 
Korrelationseffekte sind ganz klein, im Gegensatz z. B. des atomaren Stickstoff. Die dipolaren Hyper- 
feinterme und das Hauptachsensystem der Hyperfeinwechselwirkung wurden ebenfalls ermittelt. Die 
Quadrupolkopplungskonstante ffir Stickstoff wurde ebenso errechnet wie das zugeh6rige Haupt- 
achsensystem. Der Beitrag yon ungepaarten Elektronen zum Feldgradienten beim Stickstoffatom ist 
wesentlich. Die Rechenergebnisse lassen eine bemerkenswerte Delokalisierung yon ungepaarten 
Elektronen vermuten, im Gegensatz zu dem, was man erwartet, wenn man ein Kristallfeld-Modell 
benfitzt. 

Calcul des constantes de couplage hyperfin et quadrupolaire sur l'azote dans le chlorure de por- 
phyrine Fe(III). Les fonctions d'ondes ont 6t6 obtenues /~ l'aide d'une m6thode de Hfickel 6tendue 
it6rative [2]. L'hamiltonien de spin du syst6me est: 

9 f  = A I . S + I . B . S +  

e2Qqz,,z,, 
+ 4I(2I - 1) [(3I~,,- I .  I) + tl(I2~,,- I~,,)] 

off les axes doublement indic~s sont les axes principaux du tenseur gradient de champ. Trois con- 
tributions sont envisag6es dans le calcul de la constante hyperfine sur l'azote: 1) le terme de contact 
de Fermi, 2) la polarisation d'6change, 3) le terme ~ N corps. Cette derni~re contribution a ~t~ incluse 
~t cause de son importance relative dans l'azote. Le terme de contact est dominant et contient 15% 
d'effets non locaux, ce qui indique une densit~ d'61ectron non appari8 significative entre le fer et l'azote. 
Le terme de polarisation d'6change est n6gatif et plus petit que le terme de contact. Les effets de corr61a- 
tion sont assez petits, contrairement au cas de l'azote atomique. Les termes hyperfins dipolaires et le 
syst6me d'axe principal de l'interaction hyperfine ont aussi ~t~ ~valu6s. La constante de couplage 
quadrupolaire pour l'azote a 6t6 calcul~e ainsi que l'axe principal correspondant. La contribution des 
~lectrons c~libataires au gradient de champ sur l'azote est importante. Les rSsultats des calculs sugg~rent 
une d~localisation considerable des ~lectrons non appari~s, contrairement /t ce que l'on suppose 
lorsque l'on emploie un module de champ cristallin. 

1. Introduction 

In  an earlier paper  [-1], the hyperfine field and  quadrupo le  coupling cons tan t  
for i ron Fe 57m in hemin  from M6ssbauer  data  have been analyzed using 
molecular  wavefunct ions ob ta ined  by the extended Hiickel approach [2]. These 
studies lend further suppor t  to the molecular  orbi tal  (MO) picture for optical 
properties of meta l loporphyr ins  tha t  has been developed by G o u t e r m a n  [2], and 
Pu l lman  [3] and  their col laborators ,  bu t  no t  all properties of the molecules are 
successfully ca lcula ted-notably  the sign of the quadrupo le  splitt ing at i ron [1]. 

The present  paper  is the second in our  con t inu ing  series of invest igat ions of the 
propert ies of hemin,  and  deals with the theory of magnet ic  hyperfine and  electric 
quadrupo le  in terac t ion  of the l igand N 14 nuclei. The purpose  of this invest igat ion 
is two-fold. First, magnet ic  resonance  experiments  on heroin and related 
compounds  are current ly  in progress in several laboratories,  and  it would be 
desirable to have theoretical  predict ions bo th  to assist in the experimental  
analysis and  to compare  with specific experimental  results when these are available 
[4]. This work is expected to be a more  critical test of the validity of M O  theory 
than  was the in terpre ta t ion  of Fe 57m M6ssbauer  data, because crystal field theory 
[5], which assumes the unpa i red  electrons to be associated with the iron a tom 
alone, would lead to very feeble N 14 hyperfine effects. 

A second impor t an t  reason for the prevent  invest igat ion is that  the hyperfine 
in terac t ion  in the isolated n i t rogen  a tom [6] arises entirely from exchange- 
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polarization and many body effects which are comparable in importance. This 
leads us to expect that such effects would also be important in heroin although 
the direct contribution to the N 14 hyperfine constant is no longer expected to 
vanish as in the free nitrogen atom. A convenient procedure based on the 
Brueckner-Goldstone many-body perturbation [-7] theory has recently been 
applied [6] to obtain a successful quantitative explanation of the hyperfine 
interaction in free nitrogen. We have adapted this procedure to the case of N 14 

nucleus in hemin using a pseudo-atom picture based on Mulliken's population 
analysis. While this procedure is applied here specifically to hemin, it should also 
be applicable to other nitrogen containing compounds. 

The wave-functions are discussed in Section 2. Using these wave-functions, 
the contact interaction including manybody effects is discussed in Section 3, and 
the magnetic dipolar and quadrupole interactions are discussed in Section 4. 

2. Electronic Wave Functions and Mulliken Population Analysis 

The extended Hfickel molecular orbitals ~ are expressed as 

i 

where cui is the coefficient of the i th atomic orbital (AO) ~0 i in the/~th MO. The 
AO basis was chosen to be real, i.e., Px,  Py . . . .  dxz,  dxy,  . . .  On applying a variational 
procedure to obtain the cu~ in Eq. (1), we obtain the linear equation 

cui(hi i  - e i S i )  = O, j = 1, 2 , . . . ,  n (2) 
i 

which leads to the secular determinant 

I h i j  - eS i j l  = 0 (3) 
with 

h~j = Goilhl  % )  

S~; = (~o~1 ~oj) 

h being the effective one-electron Hamiltonian. In the extended Hfickel method 
the matrix elements h~j and Sij are taken over all the basis orbitals, both rc and a. 

The secular determinant was constructed and solved by means of a modified 
version of Hoffmann's [-8] original MO program. This method does not involve a 
complete self-consistent field calculation but instead provides charge self- 
consistency. It is thus referred to as a self-consistent charge (SCC) procedure [-9]. 

In the extended Hfickel calculation for iron (III) porphyrin chloride, we made 
use of the Wolfsberg-Helmholz [,10] expression for the off-diagonal Hamiltonian 
matrix elements: 

K 
hi j  = ~ -  (h u + hi j) Sij.  

The diagonal elements o f ~  were obtained [-2] by means of Eq. (5): 

hii = (h~ - h~ qz + h ~ . 
1" 

(4) 

(5) 
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We utilized the same cartesian coordinates, overlap integrals Sij and K -  1.89 
as was done by Zerner, Gouterman, and Kobayashi (ZGK, [2]). The values of 
Sij were obtained by ZGK using single exponential functions adjusted to fit the 
tails of actual atomic SCF functions. For subsequent calculation [1] of hyper- 
fine properties, the actual SCF orbitals [11] q)~ were utilized. The quantities qz 
in Eq. (5) represent atomic charge densities which are obtained by the Mulliken 
population analysis procedure [12, 13]: 

ql = ~ ~/ ~ cl"il2 + m*l ~ ~j (C~iC"~Sij'l n(l~)- Zl. (6) 

In Eq. (6), the sum over i refers to the atomic orbitals on atom l, while the sum 
over j refers to the atomic orbitals on atom m. The sum over # refers to the 
molecular orbitals with n(#) = 0, 1, 2 depending on whether the particular MO 
is empty, singly or doubly occupied. The parameters h~- and h ~ were obtained from 
spectroscopic data [2]. These parameters were chosen to have different values for 
different orbitals (i) on the same atom (l). The last term in Eq. (6), namely Z 1 
refers to the core-charge on the /th atom (that is, charge after the removal of 
valence electrons). 

The molecular geometry and coordinate axis system are shown in Fig. 1. The 
atomic orbitals included in these calculations were the 2s and 2p orbitals on the 
carbon and nitrogen atoms, 3s and 3p on chlorine, ls on hydrogen and 3d, 4s, 
and 4p on iron. These added up to a total of 121 orbitals, so that the 
summation in/z in Eq. (6) extends nominally over 121 MO's, although actually a 
number of the higher ones drop out because n(#) = 0 for them. 

There are two minor differences between the procedure we followed and that 
of ZGK [2]. 

1. We did not make use of the molecular symmetry in factoring the secular 
equation, but instead used the predictions of group theory as a check on the 
wave-functions resulting from our calculations. 

2. The solution of the secular Eq. (3) using the matrix elements in Eqs. (4) 
and (5) by the SCC procedure requires an iteration of ql. Our method of arriving 
at this charge convergence was slightly different. We arrived at the atomic 
charges for the j~th iteration by means of a weighted average of the calculated 
(or guessed) input charges and output charges for the (2 -1 )  th iteration: 

)~-1 2 - 1  
Wql, input q- q/ ,output  (7) 

q~ input = W + 1 

For the convergence parameter w in Eq. (7), we used the value w = 10 and 
iterations were continued until the condition 

2--1 ~ - 1  [ q / , input  [ < 0 . 0 5  - -  q/ ,output  

was satisfied for all 38 atoms. When this condition is satisfied, a final set of 
charges is generated according to Eq. (7), and a final interaction is carried out. 

The strategy of the calculation was the same as that of ZGK, where the five 
unpaired electrons (n(/,) = 1) in the summation (6) were restricted to molecular 
orbitals which are predominantly made up of iron 3d orbitals. This is a justi- 
fiable procedure since the extended Hiickel method does not consider exchange 
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Table 1 

Atom 

Atomic orbital charges 

AO paired unpaired 

2 2s 1.3359 0.0082 
2 2p~ 1.2784 0.0419 
2 2px 1.1156 0.0033 
2 2py 1.1907 0.1945 

\ 
) ) 

. Z Z I _ ,, 

poge)/ / /A v 7 y 

H 08 2.55 ~ [dockwise) 

Fig. 1. Molecular geometry of iron (III) porphyrin chloride and principal axis systems: - - - ,  molecu- 
lar axes; . . . . .  , principal axes of ~ff . . . . . .  , principal axes of ~. The axis Z to the page is the axis 
of rotation in going from the molecular axis system to the principal axis systems. Thus only the 
cartesian axes in the plane of the paper change their spatial orientation (Part of the r ight-hand 

pyrrole ring is deleted for clarity) 

effects. A more complete calculation including exchange effects is expected [2] 
to lead to the ground state which has been used here. The calculated results are 
nearly identical to those of ZGK, the only significant change being slight 
differences in atomic charges brought about by the different method of charge 
covergence. Since our calculated orbital charges are within 3 % of ZGK's results 
and our calculated MO energies are within _+0.2 eV of theirs, we do not 
present extensive tabulations of our results. 

Table 1 presents the Mulliken population analysis results for the nitrogen 
atom labelled 2 in Fig. 1. From the data in Table 1, we calculated for the nitrogen 
"pseudo-atom" electronic configuration" 

("~ ,0.67615 (2S)~,66795 tzph ZS)c ~ ""~ "2.0320 (2p)~.7923 

Thus, for example, the (2p)~ configuration is obtained as one half the sum of the 
2px, 2py, 2p~ paired orbital charges plus the sum of the unpaired contributions. 
The (2p)a contribution, on the other hand, is just one half the sum of the paired 
orbital charges. These "pseudo-atom" results will be used in Section 3 in the 
calculation of the exchange-polarization and many-body effects in the N 14 hyper- 
fine constants. 
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3. Theory of N 14 Contact Interaction 

The isotropic hyperfine interaction arises from the Fermi contact Hamiltonian 
[14~]: 

8~ 2 
~ F  = ~-TeTi~4h ~I'SkCS(rk) (8) 

k 

where 7e = gefie/h and 7N,4 = gNfiN/h are gyromagnetic ratios; g~ and gN are the 
g-factors for the electron and nucleus and fl~ and fiN are the Bohr magneton and 
nuclear magneton. 

If the exact many-electron wave-function for the molecule were available, 
the hyperfine energy would be obtained by taking the expectation value of ~ F  
over this wave-function. Unfortunately one usually works with the one-electron 
approximation to the many-electron wave-function where many body correlation 
effects [5] are missing. In addition, the one-electron approximation to the wave- 
function often lacks the exchange polarization effect [15J which makes the wave- 
function of paired states with spin parallel to the unpaired valence orbitals different 
from those with spin anti-parallel. One thus has to explicitly include these 
contributions to the hyperfine constant when utilizing MO wave-functions for 
the calculation. 

Summarizing, there are three distinct contributions that have to be considered 
in the calculation of the hyperfine constant. First, there is the direct constribution 
arising from the finite expectation value of ~ F  over the unpaired valence 
orbitals. Secondly, one has to consider the exchange polarization contribution 
arising from the exchange interaction of the paired valence electrons and the paired 
core electrons with the unpaired valence electrons. Thirdly, there is the many- 
body contribution arising from the instantaneous correlation between the paired 
and unpaired electrons, which is neglected in one electron theory. 

The role of correlation and exchange polarization effects is particularly 
pronounced in the free nitrogen atom, due to the vanishing direct contribution 
from the unpaired p-electrons. The exchange polarization contribution is a 
combination [6] of nearly equal effects of opposite sign from the ls and 2s cores 
namely -49.711 mHz and + 55.419 mHz, respectively. The net exchange polariza- 
tion result is thus +5.708 mHz as compared to the experimental result [16] of 
+ 10.45 _+ 0.00007 mHz. 

The remainder of the observed hyperfine coupling arises from correlation 
effects and a small additional contribution from consistency effects [5-I 
associated with the exchange-polarization. The major many-body effects has been 
found to arise from correlation between the 2p orbitals and the ls and 2s orbitals. 
The correlation among the unpaired 2p orbitals was found to have a vanishing 
effect on the hyperfine constant. These results were arrived at by the Brueckner- 
Goldstone many-body diagrammatic technique [7]. In studying exchange- 
polarization and correlation effects in hemin, we shall make use of as suitable 
adaption of this many-body procedure as applied to free atoms. 

The direct contribution to the N 14 hyperfine constant in heroin can be 
calculated in a straightforward manner by taking the expectation value of ~ F  
over the molecular wave-function with the delta function centered at the nitrogen 
site. In the molecular orbital theory, the expectation values refer to the 
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individual molecular orbitals. In the RHF approximation, where the orbital 
parts of the paired states are the same, the expectation value of the hyperfine 
Hamiltonian reduces to a sum over only the unpaired orbitals. Thus the direct 
part of the parameter A in the spin Hamiltonian AI .  S is given by 

87ZTeTN~h 2 
Adirect - 6S Z I~o.(N)I 2 

/t 
unpaired MO's 

-- - 524 ~ Iw~(N)I 2 (kG) (9) 
# 

unpaired MO's 

= 64.483 ~ I~u(N)[ 2 (mHz) 
r 

unpaired MO's 

where 
X I~(N)I  2 = Z Ic.N,2sl 2 k~ 2 
# /1 

-1- 2 2 (CN, xsCui(P2s(N) q)i(N) + ICuil 2 ]q~ 2) 
t~ i 

(10) 

for these quantities with the MO wave-functions are: 

A~oe,1 " = 4.8436 mHz, direct 

A n o n  local = 0 . 8 1 0 3  mHz, direct , 

Ad i s t an t  = 0 . 0 0 3 0  m H z .  direct 

(11 a) 

( l lb )  

(11c) 

The fact that the non-local contribution is significant, though smaller than the 
local contribution, indicates that there is substantial distribution of the unpaired 
electrons in the region between iron and nitrogen atoms, in contrast to what would 
be expected for the extreme ionic picture of the crystal-field model [5]. 

We turn next to the contribution to the nitrogen hyperfine constant from the 
exchange and correlation between the unpaired electrons and the paired electrons 
in the molecule. The latter include both the paired MO and the core electrons. 
Ideally one would want to calculate the exchange-polarization and correlation 
effects using the actual MO wave-functions for the molecule. For the exchange- 
polarization effect this could be done by the unrestricted Hartree-Fock (UHF) 
method [17]. The latest adaptation of this method to molecular calculations has 
been presented by Pople 1-18] using the INDO approach. An alternate procedure, 
if the paired electrons are localized even though the unpaired ones may be 
delocalized, is to make use of the moment-perturbation (MP) method [19] that 
has been used in solid state calculations. However, as we have seen in the case of 
the free nitrogen atom, it is quite likely that the influence of correlation on the 
hyperfine constant may be comparable to the exchange-polarization effect. 
To handle the correlation effect in the framework of current molecular orbital 
methods, one would have to employ a configuration interaction procedure, in- 
volving addition of configurations in which some of the electrons occupy higher 
orbitals. In our present work, however, we shall utilize an adaptation of the 

and the orbitals i refer to atoms other than the nitrogen atom under consideration. 
The three terms inside the bracket in Eq. (10) can be interpreted as representing 
local, non-local, and distant contributions, respectively. The values were obtained 
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Brueckner-Goldstone many-body procedure for atoms, which allows us to deal 
with both exchange-polarization and correlation contributions by similar analyses 
involving diagrammatic perturbation theory. 

A detailed description of the Brueckner-Goldstone many-body theory, as 
applied to atoms, can be found in a number of places [-6, 7]. We want to 
present here only a few bare essentials to explain our adaptation of the results for 
the nitrogen atom with this theory to obtain approximate results for the nitrogen 
nucleus for hemin. The Brueckner-Goldstone theory involves essentially a 
perturbation approach, the relevant perturbation being the difference between 
the actual Hamiltonian such as the Hartree-Fock Hamiltonian. Thus the 
Hamiltonian for a many-electron system is given by 

1 
= + r i j  (12) 

�9 i > j  

where T~. is the kinetic energy and the nuclear coulomb potential operator for the 
ith electron, 1 

= - ~- V~- Z (13) 
ri 

The zero-order Hamiltonian chosen can be expressed as 

24g o = ~ (T~ + V~) (14) 
i 

where V~ is a combination of usual coulomb and exchange potential between 
electrons in Hartree-Fock theory. The perturbation is given by 

~f ' :  i~>,~.. - ~i Vi (15) 
�9 j i j  " 

If O o is to represent the eigenfunction of ~;4~ then according to the Brueckner- 
Goldstone perturbation theory, the correct eigenfunction % of 2/g is given by 

.Eo_ o 0 o (16) 

= 0 o + 0 {1)+ 0 (21+ . . .  + 0 (" )+ . . .  

where L means that only linked terms are included. The meaning of this will be 
clear when we draw the diagrams. The perturbed function ~( 1 ) + ~(21 + ... + ~(,) + ... 
can be obtained from the perturbation expansion by introducing the unity operator 
in terms of the projection operators Pm namely, 

lop. ='~Pm-- ~l~m> <Oml (17/ 
r m 

where the [Ore> form a complete set of states obtained from single, double, triple, 
etc., excitations from the ground state �9 0. The single particle excited state wave 
functions q~i are eigenfunctions of the single particle equations 

( T  Jr - V )  (Pi = gi(,Oi (18) 

where i refers to a state other than the lowest ones which are occupied for the 
unperturbed determinantal state ~o. 
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The hyperfine constant can now be obtained by taking the expectation value 
of the hyperfine Hamiltonian in Eq. (8) over the corrected wave function 7Jo . Thus, 

1 6 ~  ]~]gN14 <~/J01/IL/]0) 
A = (19) 

3 i s  ( % 1 % )  
w h e r e / =  ~ g~(ri) s~i. 

i 

On substituting for 7J o from Eq. (16), we obtain 

( % ] / 1 % )  = foo + 2fol + f ,  + 2fo2 + " "  + 2fro, + " "  (20) 

where fro, = (~b(m)[/I~b(n)) �9 
In earlier work on atomic problems using Brueckner-Goldstone many-body 

theory, it has been shown [6, 7] that a convenient procedure to handle 
quantities like fro, is to use a diagrammatic procedure similar to that in 
quantum electrodynamics. The reader is referred to these earlier papers [6, 7] 
for a detailed description of the procedure for drawing Feynman-like diagrams 
in Brueckner-Goldstone theory. 

A typical (0,1) diagram which describes the exchange polarization effect in 
nitrogen atom is shown in Fig. 2. The line on the left-hand side represents [7] 
a "hole" ls line, meaning thereby a ls state that has been left vacant by an electron 
that is excited by exchange with a 2p electron to a higher ks-state (k>2  or 
continuum) the latter being referred to as a particle ks line. The vertices . . . . .  
and ~ ' ~ .  are associated with operators J{~' a n d / ,  respectively. In algebraic 
terms, the contribution of this diagram is given by 

fiE- 8~ ( I  I 3 ~e~N~4h2 
(21) 

<ea2p(1)eaks(2)l 1 lealx(1)ea~p(2)> <eai~(1)l 6(r)leaks(i)> 
F12 

X 
8"ls - -  gks  

Another typical diagram of the (1,1) type, is shown in Fig. 3. This diagram 
represents the effect on the hyperfine constant of the correlation between 2p and 
ls states leading to the excitation of an electron in the 2p state to higher k's and 
k"s states. The superfices _+ indicate up or down spin states, that is, spins 
parallel or antiparallel to those of the unpaired electrons. The hyperfine energy 
associated with this diagram is given by 

6E = ~ -  ~e~Nl4h 

(eakp(1)eak,~(2)l 1 LeaX,(1)ea2p(2)) 
r12 (22) X 

(els + e2~ - ~kp - ers) 
1 

(eal~(1)ea2p(2)[ k0kp(1)eak,,~(2)) (eak,,s(1)l a(r0 Leak,s(1)> 
r l  2 

X 
(/~ls + g2p - -  e k p  - -  ek" s )  

A typical (0,2) diagram is indicated in Fig. 4. It represents the combined 
effects of correlation and exchange polarization. Thus, the ls and ls + states 
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Fig. 2. Exchange polarization diagram 

Fig. 4. (0,2) Type correlation diagram 

Fig. 3. Typical (1,1) type diagram 

k ' $ - ~  

Fig. 5. Consistency diagram 

may be considered to mutually perturb each other by correlation, the perturbed 
k s  + state returning to the ground ls § state via the hyperfine interaction. The 
k ' s -  state, associated with the perturbed l s -  state, is de-excited back to the 
ground l s -  state by exchange with the 2 p -  electron. The hyperfine energy asso- 
ciated with this diagram is given by: 

T ~eTN14h2 

x (Cpks(1)~0k,~(2)l 1 kolA1)q~l~(2)) (23) 
F12 

1 
(q)Np(1)(Pas(2)l I~ok,s(1)qO2p(2)> (qhs(1)l 6(1"1)]~Og~(1)) 

?'12 • 
(2els  - ek', --  eks) (e , ,  --  ek's) 

The hyperfine energies obtained from all these diagrams can be converted 
into contributions to hyperfine constants using the relation 

6E 
A -  

I S  

where S is the total electronic spin of the atom, 3/2 for nitrogen. The contributions 
from the (0,1), (1,1) and (0,2) diagrams to the hyperfine constant [6] for nitrogen 
atom are listed in Table 2 and add up to a value quite close to the experimental 
result. The (1,1) and (0,2) diagrams represent mainly the correlation effect except 
for diagrams of the type shown in Fig. 5, which are one-electron in nature and 
represent consistency contributions to the exchange-polarization effect from the 
(0,1) diagram in Fig. 2. The hyperfine energy of this consistency diagram is given by: 

f i E - -  3 7eTN14h2 

1 

F12 
1 

<~o ls(1)~Ok,s(2)] 
N 

ko,~(1)~o2v(2)) 

I~o~s(1)~o1,(2)) (q,,~(1)l 6(r,)ko~,,(1)) 
Y12 

(24) 
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Table 2. Net contributions from all (0,1), and (i,1) and (0,2) diagrams 

Class of diagram Contribution mHz 

(0,1) 5.70810 
(1,1) 5.20194 
(0,2) - 0.39760 
Total 10.51243 
Experiment 10.45 _+ 0.00007 

We shall next consider the adaptation of the diagrams for the nitrogen atom 
to evaluate the exchange-polarization and many-body contributions to the N 14 
hyperfine constant in heroin. In a straightforward extension of the many-body 
perturbation method to study hyperfine interaction in a molecule such as hemin, 
one would again have to deal with diagrams similar to those indicated in 
Figs. 2-5. However, the hole and particle lines in these diagrams would now 
involve multicenter wave-functions which could be rather difficult to handle. 
One has, therefore, to resort to approximation, and in this connection a "pseudo- 
atom" picture can be utilized to advantage. The procedure we have adopted is 
to continue to use the diagrams for the free atom but weight their contributions 
by appropriate factors depending on the populations in the various electronic 
states of the nitrogen "pseudo-atom" in hemin. 

We start by considering the exchange-polarization diagram in Fig. 2. From 
the population distribution listed in Table 1 for the pseudo-atom, we notice that 
there are now 0.2396 unpaired 2p-electrons which polarize the ls electrons, in 
contrast to three unpaired 2p-electrons in the free atom. In addition, one has to 
take into account the difference in the spins of nitrogen atom and hemin of S = 3/2 
and 5/2, respectively. Thus, the ls contribution for the atom has to be multiplied 
by a factor: 

0.2396 3 
A - -  • 

3 5 

For the exchange-polarization effect associated with 2s state, there is an additional 
factor to be considered since the 2s population in each spin state is now about 
0.668 in place of unity as it was in the free atom. The conversion factor for the 2s 
contribution is then 

B = A  x 0.668. 

These factors are utilized in obtaining the exchange-polarization contribution 
listed in Table 4. In Fig. 3, the hole line on the left can be ls +- or 2s • Since the 
hyperfine vertex is attached to the particle line associated with the perturbation 
of the 2p states, the contribution to the hyperfine structure again depends upon 
the difference in up and down spin populations for the 2p states. It then appears 
that the conversion factors to get "pseudo-atom" results are again respectively A 
and B for the 1 s and 2s states. The conversion factors for Fig. 4 are exactly the same 
as those of Fig. 2 and Fig. 3 as long as both hole lines do not refer to the 2s state. 
In this latter case the conversion factor involves the factor given by: 

C = A x (0.668) 2 . 
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Table 3 

Figure Atomic Conversion factors for pseudo atom hfs 
contributions, mHz "pseudo-atom" mHz 
ls state 2s state ls state 2s state ls state 2s state 

2 -50.430 +56.220 A B -2.41557 1.78811 
3 0.28695 1.51351 A B 0.01374 0.04495 
4 - 0.610142 1.97335 A C -0.02922 0.04167 
5 - 1.59135 4.77559 A C -0.07622 0.10085 

Table 4. Nitrogen"Pseudo-Atom"hfsinHemin 

Order ofcontribution Description hfsconstant, mHz 

(0,0) direct 5.6569 
(0,1) exchange-polarization - 0.6242 
(1,1) correlation 0.1706 
(0,2) correlation and consistency -0.1035 
Total 5.0998 

(= 1.82 gauss") 

" A (gauss) = A (mHz) (9J9)/2.80. 

An inspection of Fig. 5 indicates the conversion factors for the "pseudo-atom" 
are the same as in Fig. 4. These considerations have yielded the entries in Table 3 
for the contribution of Figs. 2-5. 

The same conversion procedure has been applied to all the diagrams for 
nitrogen a tom leading to the net (0,1), (1,1) and (0,2) contributions in Table 4. 

The (0,1) contribution represents the effects of the exchange-polarization 
which is the next important  contributor after the (0,0) direct effect. There could 
be an additional small exchange-polarization contribution from the influence 
of the small 0.0082 surplus populat ion in the 2s up spin states on the is cores. 
This effect is not taken into account in our diagrams. However, we have evaluated 
this contribution by the moment-per turbat ion procedure [19] and found a 
negligible value, 0.0033 mc/sec. The combined effect of (1,1) and (0,2) diagrams 
represents the sum-total  of the influence of many-body effects and is seen to be 
small compared to the exchange-polarization effect. While this net contribution 
from many-body effects is a small fraction of other effects, the former arises out 
of the differences of large numbers from individual diagrams and it would have 
been impossible to ascertain its magnitude without actual calculation. 

Two main criticisms could be raised about  the adaptation procedure used to 
derive the hyperfine constant in heroin from that for the free atom. The first has 
to do with the use of the "pseudo-atom" population in the weighting factors 
utilized. This could be construed as equivalent to the assumption that the total 
contribution to each diagram arises from electrons in the neighborhood of the 
nitrogen a tom rather than the entire region spanned by the pertinent molecular 
orbitals. This criticism is however not entirely justified since the Mulliken popula- 
tion analysis is an at tempt  to describe the delocalized nature of the electronic 
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distribution. Further, the major part of the direct hyperfine structure contribution 
has been found earlier in this section to arise from the orbital density on the 
nitrogen atom alone. Only about 15 % of the direct hyperfine structure arises from 
the nonlocal term involving iron 3d orbital. The exchange-polarization and 
many-body correlation contributions to the hyperfine structure are expected to 
be even more short range in nature than the direct hyperfine interaction. Thus, 
we expect only about 10% error in our estimation exchange-polarization and 
many-body effects due to the use of "pseudo-atom" technique. 

The second possible criticism is the use of the same excited state energies and 
wave functions in the diagrams for the "pseudo-atom" as in the atomic case. This 
criticism may be answered by noting that for most of the important diagrams, 
the major contribution [6] arises from the continuum excited states and these 
are not expected to be bery sensitive to the difference in the potential for the 
"pseudo-atom" and the free atom. 

The final calculated value of A is 1.82 gauss, and this may be compared with 
the result recently obtained by Scholes [-4] for the nitrogen hyperfine splitting in 
heroin: 3.1 gauss. Scholes doped hemin (and hematin) into perylene and obtained 
well resolved esr  spectra at 4.2 ~ Crystal orientation studies revealed a small 
(<  10 %) dipolar contribution to the observed nitrogen hyperfine constant. Thus, 
we may consider that the experimental 3.1 gauss arises from the Fermi contact 
term. Our calculated result is about 60 % of the experimental finding, which is 
acceptable agreement in view of the approximations involved. 

We now consider the magnetic dipolar hyperfine tensor/~. 

4. Magnetic Dipole and Electric Quadrupole Coupling Constants 

The electron-nuclear spin dipolar Hamiltonian is given by Eq. (25): 

Hdip = 7eTN 14h2 2 3(si" ri) ( I"  ri) -- r~(s i �9 I)  
i r~ (25) 

where 7e and 7N~, are the gyromagnetic ratios of the electron and the N 14 nucleus, 
I is the N 14 nuclear spin, ri is the vector from the origin at the nucleus to the ith 
electron, and s~ is the spin of the ith electron. 

The contribution of ~/t~a~v to the spin-Hamiltonian will be given by: 

~d spin = I ' B "  S. (26) ip 

The components of the tensor Jff are obtained as usual by equating the matrix 
elements of 2/ga~ p over the total wavefunction to the matrix elements of Jf,~i~ in 
over the spin-function only, namely, 

<7"1 ~aip 17") = <zt :r ~" Iz) (27a) 

where 

7' = ~b Z (27 b) 

with 

q~ = I~Pl (1) ~P2 (2) ~P3 (3) 94(4) ~P5 (5)1 (27c) 
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and 
Z = c~(1) c~(2) c~(3) e(4) ~(5). (27d) 

The ~p,(n) in Eq. (27c) are the spatial parts of the one-electron MO's in Eq. (1), 
obtained from the extended H/ickel calculation. As is usual with magnetic effects, 
only the half filled MO's have to be considered. Using this procedure, the 
components of the tensor/~ are given by: 

- By~ Byy By~ 

B~x Bzy B= 

1 ]}e~)Nl4h2 Z 2 2 C"iC~j <@i[ 
5 ,u i j 

unpa i red  
MO's 

3 X  2 - -  r 2 3xy 3 x z  

1,5 1,5 1,5 

3yx 3y 2 - -  r 2 3yz 
F 5 r 5 F 5 

3 z x  3zy 3 z  2 - -  r 2 

F5 1,5 1,5 

(28) 

I j>. 

In the evaluation of /~  from Eq. (28), only the one-center local terms were 
retained. The two-center non-local and distant terms were neglected because of 
the sharp decay of the 1/r 3 term as distance increases from the origin. This leads 
[20] to rather small values for the two-center integrals. The calculation for /~ 
was carried out for the nitrogen atom labelled 2 in Fig. 1. From symmetry con- 
siderations, the corresponding tensor for other ligand nitrogens can be obtained 
by rotational transformations. On retaining only the local terms, Eq. (29) for/~ 
reduced to 

5 2p I~ 
unpa i r ed  

MO~s 

f 2 ,','~ 2 2 __ C 2z ) 
5 ( z  Ct~ x - -  Cur 
6 

C,uyC #x 
6 
~ C#z C ux 

C#x C#y 

(2cuy cu~ 

Cruz Ct~y 

CpxCg z 

6 Cl~y C#z 

2 2 2 C 2 3(2q,~ - cux - l,r), 

(29) 

where cux, cuy, and cu~ are the coefficients of the Px, Py and Pz atomic orbitals in 
the #th molecular orbital. The expectation value of 1/r 3 over the 2p-orbitals, 
namely (r-3>2v = 3.0996ao3, was obtained using the atomic SCF functions of 
Clementi [11] for the 4S state. The numerical factors in Eq. (29) result from the 
angular integrations over p-orbitals. 

Eq. (29) indicates, as expected, tha t /~  is identically zero in the free nitrogen 
atom since all the diagonal and off-diagonal elements vanish as a consequence 
of the spherical symmetry of the atom. In the molecule, the unequal populations 
of Px, Py, and pz orbitals permits the elements o f /~  to be non-vanishing. The 
off-diagonal elements Bxy, Byx, B:,~, and Bzx vanish as a result of reflection 
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symmetry. The final result for B is in a non-diagonal representation corresponding 
to the molecular coordinate system in Fig. 1, is given by: 

/-0.3374 0.0 0.0 \ 
B -  YeVN14h2 / 0.0 0.5020 --0.0296) . (30) 

5 \ 0.0 --0.0296 4 . 1 6 4 6 /  

In order to transform /~ to a diagonal form it is necessary to rotate about the 
x-axis by an angle 0B (see Fig. 1). The transformation matrix is expected to have the 
form: 

;~i',J = c~ sin0~ ~ c ~ r ]  (31) 

-sin0B cos0B/ \cuz/  

We seek a principal axis system in which the remaining off-diagonal elements 
vanish, that B/z, = Bz,~,, = 0. This is equivalent to the condition: 

2 (cuyc,~,) = 0. (32) 
tt 

unpaired 
MO's 

Using Eqs. (31) and (32) we obtain 

Cup(zz) + Cup (yy) sin208 = 0 C~y, Cuz, = Cup(yz) cos20B + 2 
tz 

unpaired 
MO's 

(33) 

by: 
-0.3374 

~e~)N14h2 0.0 
5 

0.0 

-2.5970 0.0 

0.0 3.8941 

0.0 0.0 

0.0 0.0 ) 
O.5O59 0.0 
0.0 -0.1685 

0.0 ) 

0.0 (mHz). 

-1.2971 

(34a) 

(34b) 

It is sometimes convenient to express the components of hyperfine tensor/~' 
in terms of the field H .... at the nuclear site for nmr experiments, or in terms of 
Helect., the field at the electron site in esr experiments. The two alternative forms 
of B' are given by 

/~'.S 
H .... - 7N 14h , (35 a) 

I.~' 
Helect. = (35 b) 

?e h 

5 

where Cup(yz) = ~ c~,ycu~, etc. 
/ z= l  

unpaired 
MO's 

Eq. (32) leads to 08 = - 2 . 5 5  ~ the negative sign indicating clockwise-rotation 
in Fig. 1, and the principal components of the dipolar hyperfine tensor/~' are given 
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In the analysis for B, we have not included exchange-polarization and correla- 
tion effects as we did for the isotropic term A. Since the free nitrogen atom is 
spherically symmetric, such effects are absent and so we do not have available 
the requisite diagrams for the free atom which could be adjusted to obtain the 
isotropic contributions in the pseudo-atom. However, an analysis of these 
anisotropic core-hyperfine effects in the excited p-state alkali atoms [21, 22 l 
indicates that such effects are usually no more than ten percent of the direct effect. 
It is unlikely that anisotropic core hyperfine effects in our nitrogen pseudo-atom 
would have any more relative importance than this and so their neglect is not 
very serious. 

Adding the isotropic hyperfine constant (1.82 gauss, Table 4) to the dipolar 
contributions (Eq. 35 b) we find that the hyperfine splittings predicted along the 
principal axes of hemin are: X -- 0.893 gauss, Y-- 3.211 gauss, Z = 1.357 gauss. 
Thus the MO calculation predicts a highly anisotropic hyperfine pattern, in 
contrast to the nearly isotropic splitting observed by Scholes [4] in single 
crystals, where a hyperfine splitting of 3.1 + ~ 0.3 gauss was found. As can be seen 
from Table 1, the calculation predicts large differences in the populations of 
Px, Py and Pz on nitrogen and it is these differences which give rise to predicted 
anisotropic hyperfine coupling. The Scholes [4] experimental result suggests 
that all the unpaired populations in the nitrogen orbitals are small, or that they are 
all very nearly equal. In either case small dipolar hyperfine would be the result. 
We feel it most likely that the dx2_y~-py interaction has been overestimated 
relative to the dxy-Px and dyz-Pz interactions. This could happen if, for 
example the dx2_y2-py overlap integral is too large relative to dxy-px or 
dy z -p~. Since we used single term Slater functions in the overlap calculations, 
such errors could arise. An improvement of the method would therefore involve 
calculation of Fe-N overlap integrals with an extended basis set-for example 
Clementi's functions [11]. Another possibility is that the dx2_y2 orbital is "con- 
tracted" in the molecule due to repulsion by nitrogen lone pair electrons. This 
would effectively lower the d~2_y2 interaction. It is interesting to observe here 
that just such a contraction is what is required to improve our earlier 
calculation of the quadrupole splitting at iron Il l ,  where the correct magnitude 
but wrong sign was obtained. We now find that a preliminary examination of the 
situation indicates that a slight contraction of d~_y2 relative to the other 
d-orbitals could lead to a positive contribution to the coupling constant which 
could offset the negative result we had found earlier and produce the correct sign 
and order-of-magnitude of the field gradient at iron. It thus appears that the limited 
basis set MO method is not flexible enough for calculation of certain hyperfine 
parameters. 

Nuclear Quadrupole Coupling 

Both the magnetic dipole and electric quadrupole coupling constants depend 
on the asymmetry of the charge distribution in the neighborhood of nitrogen. 
But while the magnetic interaction depends only on the charge density due to the 
surplus spin states, the quadrupole interaction involves the entire density. Thus 
these two hyperfine interactions provide complementary information regarding 
the electronic structure of hemin. 
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The nuclear electric quadrupole Hamiltonian in the principal axis system of 
the field-gradient tensor, components qx-x',, qy- / ' ,  qz,,z,,, may be expressed in the 
form [23]: 

eZQqz"z" [(3/z2,,- I-  I) + q(I2,,- It2,,)] (36) 
JFQ -- 4I(2I  - 1) 

where 

lqz,,:l ~ Iqy,,y,,I ~ I q : : l  �9 (37) 

The asymmetry parameter, t/, is given by 

tl _ qx"~" - qy"y" (38) 
qz,,~,, 

We shall make use the definition of the field-gradient tensor operator in the form: 

q~r = -  2 
i 

all valence 
electrons 

\ r i /  

Zki ~ ~li 
(39) 

where Xki are x, y, or z (k = 1, 2, or 3) coordinates of the ith electron in the 
molecular axis system. The field-gradient tensor qk in the molecular axis system 
can be obtained by taking the expectation value of the q~P" over the entire 
molecular wave-function including all valence electrons. The sum over electrons 
in the operator in Eq. (39) then gets replaced by a sum of expectation values 
over all the occupied MO functions ~p,. On substituting for ~p, from Eq. (1) in terms 
of atomic orbitals ~o., 

66 

qkl = ~, ~, CumC,,(~O,,lq~F']~On) n(la) (40t 

. . . .  pied~ (o . . . .  11~ 
all # = 1 m,n 

MO's  / \ A O ' s  / 

where n(#)=  1 and 2 for singly and doubly occupied orbitals. Again in view of 
the 1/r 3 dependence of the q~P, the non-local and distant terms would be 
expected to be small [20]. However this neglect is somewhat less justified than for 
the magnetic dipolar case, due to antishielding effects [24]. But in the absence 
of a definite knowledge of these antishielding factors, particularly for the non- 
local terms, we have neglected the non-local and distant terms rather than 
introduce uncertainties. Hopefully such effects can be evaluated in the future and 
added to our results here. Our earlier calculation of the quadrupole spliffing at 
iron [1] also considered only local terms. The calculated value of A E was 
-0 .73  mm/sec, while the experimental M6ssbauer data of Johnson [32] for 
heroin chloride seems best fit by A E  = +0.76 mm/sec. We therefore may have 
obtained the wrong calculated sign of AE.  A more detailed calculation of A E  
at iron, which includes non-local and distant terms, as well as possible d-orbital 
expansion and contraction effects, is being carried out. 

Here we only consider local terms for nitrogen, which in effect corresponds to 
applying the Townes and Dailey theory [25], except that our atomic populations 

2 Theoret. chim. Acta (Berl.) Vol. 16 
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are obtained from MO calculations rather than from empirical estimates of 
ionic characters and hybridization parameters. 

rT )2 66 = -  Z 
p #=1  

~ (2cu~ - cuy - c.~) (41 a) C#xC#y ~ CuxCuz 

3 (2c,r - cu~ - cux) 16CuyCux 2 2 2 2 6 CuyCuz 

\ 6 CuzCux 6 2 2 2 _ C2y 3 CuzC~,y ~ (2C~,z - cux 

Substituting for ( r -a )2p  and for eux, Cur and cu~ from our molecular orbital 
calculations we get 

0.9731 0.0 0.0 \ 

: 0.0 -0.5969 -0 .1018)  ao 3. (41b) 

0.0 -0.1018 -0.3762 

The dia~onalization of the ~ tensor is achieved by an identical procedure 
as for the B tensor. The principal axis system for ~ is obtained by a rotation 
of the molecular coordinate system by +21.36 ~ around the molecular x-axis 
(see Fig. 1). In order to conform with the convention in Eq. (37), we redefine the 
principal axes of ~ such tnat x and z axes after the rotation are interchanged and y 
is replaced by - y .  The principal axes chosen in this way are relabeled with 
double primes, the principal components being given by: 

/ -0 .2673 0.0 0.0 \ 

q't'o t ~- 0 .0  -0.7058 0.0 ) (42) 

0.0 0.0 +0.9731 

The two essential parameters that define the field-gradient tensor in the 
principal axis system are qz,,z,, = +0.9731ao 3, and t/=0.457. For the sake of 
analysis of the relative importance of the paired and unpaired electron states in 
determining the field-gradient, we have separated these contributions to ~ and 
listed them in Eqs. (43) and (44). The two contributions are separately~ 
diagonalized, the principal axes of qunpalred being identical to those of the B 
tensor while qpaired requires a rotation of 0g, paired = 16.36 ~ about the molecular 
x-axis followed by a similar relabeling as for  qtot: 

/0 6  00 00 ) 
~unp,i~ea = 10.0 0.3374 0.0 ao3,  (43) 

0.0 0.0 - 0.5059 

- 0.0094 0.0 0.0 

~pairoa= | 0.0 --0.6383 0.0 ao 3. (44) 

\ 0.0 0.0 + 0.6477 

It is noteworthy that qunp,~d at the ligand nitrogen nucleus is sizeable, in 
keeping with the substantial degree of mixing of metal and ligand orbitals 
observed in the analysis of the isotropic hyperfine constant. Also the paired 
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orbitals are found to make a major contribution to the field-gradient tensor, 
indicating that there, as in the case of the Fe 57m nucleus [1], no simple relation is 
expected between qtot and/~. We should note here that the Itunpaire d is probably no 
better calculated than was /~, since both quantities depend upon the same 
electron distribution (see above for difficulties with the B calculation). We have 
no way of assessing the accuracy of Itpairea, because there is no experimental 
separation of qunp,irea and qpairea" Further discussion is not warranted in the 
absence of the necessary experimental quadrupole data. 

In order to calculate the quadrupole coupling constant, e2Qq defined by 

e2 Q q = e2 Q( 1 - 7) qz"z" - (45) 

We require a knowledge of both Q and the atomic shielding factor 7. Neither of 
these quantities is known definitely. Values of Q in the literature for example 
range from [26, 27] Q =0.007 x 10-24cm 2 to 0.03 x 10-2~cm 2. The reason for 
this is that no atomic measurements which yield Q more accurately are available 
since nitrogen is spherically symmetric in its ground-state (4S) and the values 
quoted are derived from estimates of the field-gradients in molecules. 

In order to avoid these uncertainties, we have made use of the coupling 
constant (eZQq)p~-9 mc/sec per p-electron that seems to fit most available 
data in nitrogen compounds [28] and combine it with the MO calculations 
to yield 

e2Qq'~e2Qqp ~ uz"2 cuY" n(#) 
/~=1 Z 

5qz,,~,, (46) 
- 4 ( r -  3)2p e2Qq, 

= + 3.575 mHz 

with qz"z" = + 0.9731 a o 3 and ( r -  3 ) 2  p : 3.0996 a o 3. 
If we had made use of Eq. (45), it would be necessary to incorporate shielding 

effects of the core-electrons on the field-gradient due to the valence electrons at 
the nucleus and also the influence of correlation effects [21]. Similar comments 
regarding these corrections would apply here as in the case of /~  since both of 
these properties involve similar angular dependence on electronic coordinates. 
However, by utilizing an empirical value of e 2 Qqp, we are indirectly incorporating 
shielding and correlation effects. The extent to which such effects have been in- 
cluded will depend on the validity and accuracy of the choice for e2Qqp. 

It would be very interesting to compare our prediction with the experimental 
values of e2Qq and q when available as another test of the predictions of the MO 
theory used here for heroin. 

Conclusion 

As remarked earlier, while the major part of the isotropic nitrogen hyperfine 
constant arises from the direct effect, the exchange-polarization contribution was 
also found to be important  from a quantitative point of view. For  purposes of 
discussion it is helpful to split up the exchange-polarization effect into two parts, 

2* 
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a part arising from the ls core and the other from the paired valence electrons. 
The former is probably quite well estimated by our adaptation of  Brueckner- 
Goldstone technique. However, the need to use the Mutliken approximation in 
this case could have been avoided if we had utilized the moment-perturbation 
approach [19] and calculated the exchange interaction using the actual unpaired 
orbitals rather than the pseudo-atom approximations. The second contribution, 
that from the paired valence orbital cannots, be simply evaluated by the moment- 
perturbation technique, because of the multicenter nature of the paired valence 
orbitals. This contribution can however be evaluated alternatively by a molecular 
orbital approach of the UHF type. The recent work of Pople using the INDO 
method [,18] would be helpful in this respect. However, to incorporate correlation 
effects in an approach of this type one would have to utilize configuration inter- 
actions [29] which complicate the calculation and require a careful choice of 
configurations that have to be admixed. Our adaptation of the Brueckner- 
Goldstone procedure for atoms through the pseudo-atom procedure thus provides 
a viable alternative for an estimation of the contribution from many-body effects. 

Both the isotropic and anisotropic magnetic hyperfine constant for the N 14 
nucleus have been found to be quite substantial. A crystal field model [5], which 
presumes essential localization of the unpaired electrons on the iron, would be 
quite inadequate to explain the substantial N 14 hyperfine interaction. The 
interpretation of optical data [2], the Fe sT" magnetic and quadrupole .hyperfine 
interactions [-1] and the proton shifts [31] observed by NMR also argue against 
the crystal field model and favor the delocalized molecular orbital picture. 

The molecular orbital model is not without fault, however. This method 
seriously over-estimates the anisotropic (dipolar) hyperfine interaction, at the 
same time giving the wrong calculated sign of the quadrupole splitting at iron [1]. 
It is, therefore, felt that better MO methods must be found, or that the extended 
Hfickel method must be made more flexible by allowing the atomic orbitals to 
distort. 

Since the N 14 quadrupole interaction derives contributions from both paired 
and unpaired orbitals, it is perhaps a less sensitive index of the conjugation 
between the iron and porphyrin orbitals. The magnitude of the quadrupole 
coupling constant is rendered a little uncertain by the uncertainties in the N a4 
quadrupole moment. Perhaps it would be more meaningful to compare theoretical 
and experimental results (when the latter are available) in terms of the ratio of 
e2Qq in hemin and other nitrogen compounds such as pyrrole and pyridine. In 
addition, experimental information on the asymmetry parameter, t/, and the 
orientation of the principal axes, which are independent of Q, would be very 
desirable to have for comparison with theory. 

A theoretical calculation is currently in progress for the relatively large 
zero-field splitting term in the spin-Hamiltonian of heroin, which has been 
measured experimentally [32]. When experimental data are available to test our 
prediction for N 14 hyperfine structure, hemin will have the status of being unique 
among the simpler of the biologically important molecules whose electronic 
structure have been subjected to detailed quantitative analysis in analyzing the 
wealth of microscopic properties available by current advances in physico- 
chemical experimental techniques. 
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